Neural networks in intestinal immunoregulation
نویسندگان
چکیده
Key physiological functions of the intestine are governed by nerves and neurotransmitters. This complex control relies on two neuronal systems: an extrinsic innervation supplied by the two branches of the autonomic nervous system and an intrinsic innervation provided by the enteric nervous system. As a result of constant exposure to commensal and pathogenic microflora, the intestine developed a tightly regulated immune system. In this review, we cover the current knowledge on the interactions between the gut innervation and the intestinal immune system. The relations between extrinsic and intrinsic neuronal inputs are highlighted with regards to the intestinal immune response. Moreover, we discuss the latest findings on mechanisms underlying inflammatory neural reflexes and examine their relevance in the context of the intestinal inflammation. Finally, we discuss some of the recent data on the identification of the gut microbiota as an emerging player influencing the brain function.
منابع مشابه
Comparison Study on Neural Networks in Damage Detection of Steel Truss Bridge
This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...
متن کاملEstimation of Industrial Production Costs, Using Regression Analysis, Neural Networks or Hybrid Neural - Regression Method?
Estimation (Forecasting) of industrial production costs is one of the most important factor affecting decisions in the highly competitive markets. Thus, accuracy of the estimation is highly desirable. Hibrid Regression Neural Network is an approach proposed in this paper to obtain better fitness in comparison with Regression Analysis and the Neural Network methods. Comparing the estimated resul...
متن کاملPREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS
Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملPrediction the Return Fluctuations with Artificial Neural Networks' Approach
Time changes of return, inefficiency studies performed and presence of effective factors on share return rate are caused development modern and intelligent methods in estimation and evaluation of share return in stock companies. Aim of this research is prediction of return using financial variables with artificial neural network approach. Therefore, the statistical population of this study incl...
متن کامل